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ABSTRACT 

 

This study present autoregressive integrated moving average (ARIMA) models to forecast 

monthly patient demand for Paediatric clinic at a private hospital in Kuantan. The ARIMA 

model developed hold potential for providing operational decision support in the hospital. 

The forecasting success attained for the Paediatric clinic could aid managers to make capacity 

and advance planning in the wards and hospital. The ARIMA model was developed from 

time series data routinely-collected at Paediatric clinic. The study evaluated patient demand 

at Paediatric clinic by using time series data collected from year 2012 until year 2017. 

Analyses of time series data of Paediatric clinic produce ARIMA (2, 0, 2) model of monthly 

data. The ARIMA (2, 0, 2) give rise to MAPE of 11.988 percent respectively, therefore 

ARIMA (2, 0, 2) model was selected for modelling and forecasting paediatric patient demand 

based on the lowest MAPE values. The out of sample forecast by using ARIMA (2, 0, 2) 

model indicated a fluctuation of monthly paediatric patients demand, being the lowest was 

325 and the highest was 400 patients that could receive treatment from the clinic in a month. 

The forecasting models then could be extended to other clinics.    

Keywords: Hospital, Paediatric clinic, Forecasting, ARIMA model.  

 

1. BACKGROUND 

 

The effective management of hospital has become increasingly important as Malaysia 

economic and society continue to develop. Hospitals face many challenges as our domestic 

population aging, diseases pandemic (e.g. H1N1), and cost of operating and maintenance 

increasing. The government runs around 145 public hospitals which are financed by taxes and 

other public revenues and these facilities are supported by more than 217 large private 

healthcare service providers, as well as around 6442 medical clinics (Inside Malaysia, 2012). 

The healthcare sector in Malaysia has been expanding at 8 percent to 12 percent annually 

over the past few years (James, et al., 2009). Accordingly, the private healthcare provider is 

expected to grow further due to private insurance benefits and rising per-capital income 
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(Peterson, 2008). These private hospitals are normally equipped with the latest diagnostic and 

imaging facilities. However, majority of private hospitals facilities are in urban areas.   

The ageing of the population a growing affluent class in Malaysia, the range of 

medical insurance products available and health-conscious society provides a strong market 

growth for private healthcare providers (Ng, 2008). Coupled with the awareness of 

cardiovascular and hypertension as the number one killer disease in Malaysia, the demand for 

private healthcare service is growing tremendously (Inside Malaysia, 2012).  

Another factor that boosts the expansion of private healthcare service is medical 

tourism. Malaysia has been rated as the world's third best medical tourism destination. 

Malaysia attracts medical tourists because the availability of good healthcare facilities at low 

cost (Chia, 2009) and together with its favorable exchanges rate, political and economic 

stability and high rate of literacy. The Association of Private Hospitals of Malaysia (APHM) 

has projected that number of foreigners seeking treatment in Malaysia for 2009 is expected to 

be in the region of 625,000, compared with the estimated 501,000 in 2008. The association 

had previously forecast for the medical tourism sector to contribute around RM580 million 

by treating more than 849,000 medical tourists by 2010 (Chong, 2009). 

Therefore, to be able to plan effectively, it is vital for any organization to anticipate 

future. Hence, the ability of a private hospital to predict demand is very valuable. Forecasting 

the demand of hospital services can have a significant effect on both customer service and 

financial result (Kadri et al., 2014). Thus, accurate prediction would facilitate, at a micro 

level for example scheduling nursing and support personnel, and at macro level for financial 

and strategic planning for the hospital. Forecasting also can be a great help to healthcare 

service providers to manage capacity, thus could improve efficiency, reduce costs and 

increase profitability.  

The purpose of this study is to develop univariate time series models for the monthly 

volume of patients attending paediatric clinic at a private hospital in Kuantan. Thus, the 

results can be used for forecasting the demand for paediatric treatments in the hospital at least 

in the short term. Accordingly, the forecasting models can be a great help to the hospital’s 

management in two important ways. First, staff can be scheduled in accordance with peak 

demand in the clinics or the hospital as a whole. For example, if patient arrival for treatment 

tends to increase at a particular time in a week, additional staff can be regularly scheduled to 

handle this demand. Second, regular demand can be predicted months in advance. Thus, if the 

demand increases beyond the initially predicted, additional staff strength is required. 

The hospital may have three types of patients, that is, elective, urgent and emergency 

patients. As such, the forecasting results and approach in this study could be applied to 

improve resource allocation and strategic planning. The forecasting results can be applied to 

staffing schedule, patients waiting time improvement (especially, schedule elective patients) 

and forecasting beds occupancy.  
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2. PROBLEM TO BE SOLVED 

 

Variations in demand for a healthcare service can occur unpredictably. The steady number of 

patients increase begins to put pressure on the available workforce and strain facility capacity 

of a hospital. This capacity crisis resulted in significant operation bottlenecks, including an 

increase in patients waiting to be admitted into wards, and long wait time for laboratory, 

radiology, and other diagnostic services. The consequences of this situation will affect the 

quality of treatment and prognosis by medical staff that is overloaded thus leading to decrease 

in job satisfaction (Kadri et al., 2014). If this variability can be reduced, then the hospital can 

achieve higher efficiency. Demand forecasting can help hospital management prepare for 

these variations and avoid unintentional mistake. This study attempts to develop parsimony 

and effective models that could predict the numbers of patients present monthly, therefore, 

could assist the hospital’s management for a better planning.  

 

2.1 Time series and hospital admissions 

 

Forecasting patients receiving treatment at hospital has been an important research topic for 

decades. Many previous studies have been focused on predicting hospital demand capacity 

using the time-series models (e.g. Jones et al., 2002), network flow models (e.g. Akcali, et 

al., 2006), logistic regression models (e.g. Littig and Isken, 2007), and queuing model (e.g. 

Kao and Tung, 1981), etc. Forecasting process must consider the relationships among 

individual variables and the model must be validated as a whole to ensure capability of the 

model’s forecast. Thus, combining right data with right model is very essential to obtain the 

better results (Jain, 2005/2006).  

Time-series analysis has been applied previously to health care and particularly to 

hospital demand capacity. A time series is a sequence of historical data recorded over time, 

with a consistency in the activity and the method of the measurement (Wang, 2008). The 

main characteristic of time series modelling is that it only takes into consideration the 

relationship between the historical data at time )( tyt  from the past observations 

nyyy ,......., 21 (Bowerman et al., 2005).  The advantage of time-series analysis is simplicity 

and effectiveness, and attractive for practical applications (Kadri et al., 2014).  The finding of 

relevant researches is briefly described below. 

Reis and Mandl (2003) built autoregressive integrated moving average (ARIMA) 

models to forecast overall visits and respiratory-related visit at paediatric emergency 

department in Children’s Hospital Boston. The main objective of this study is to develop 

automated surveillance systems that can detect abnormality in disease patterns as an early 

signal of a bioterrorist attack. The results showed that overall visits and respiratory visits are 

best fitted by ARIMA(2,0,1) and ARIMA(1,0,1) with the mean absolute percentage error 

(MAPE) of overall visits model is 9.37% and 27.54% respectively. The ARIMA model of 
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overall visits is able to forecast 7 day-long abnormal visit patterns.  Thus, the model can 

provide a foundation for real-time surveillance and bioterrorism detection.  

Jones et al. (2002) described several ARIMA models of daily hospital beds 

occupancy from emergency admissions and number of emergency admissions at Bromley 

Hospitals NHS Trust and developed models that are able to forecast beds occupancy with 

good accuracy. Accordingly, Abraham et al. (2009) developed several ARIMA models to 

forecast daily inpatient admissions and occupancy in Royal Melbourne Hospital, Victoria, 

Australia. They found that the models are able to forecast emergency occupancy up to seven 

days ahead with reasonable accuracy but emergency admissions are unpredictable. ARIMA 

model also performed better in forecasting cholera cases in Beira, Mozambique (Bergh et al., 

2008).  

The time series analysis is also a useful tool for forecasting emergency department 

(ED) demand. Kadri et al. (2014) used ARIMA models to forecast emergency patient arrivals 

to the ED of hospitals in France. They found that the ARIMA models are suitable to predict 

the number of ED visits. The ARIMA models also suitable to forecast dengue haemorrhagic 

fever (DHF). Promprou et al. (2006) established ARIMA (1, 0, 1) model and found that the 

models are very useful in forecasting the DHF in Southern Thailand.  

Chang et al. (2004) applied ARIMA models to determine whether the severe acute 

respiratory syndrome (SARS) epidemic was significantly connected with the rate of medical 

service utilization in Taiwan. They found that the models are able to detect the changes in 

medical service utilization. Meanwhile, Earnest et al. (2005) successfully applied ARIMA (1, 

0, 3) model to forecast the number of bed occupied in a tertiary hospital during the SARS 

outbreak in Singapore. Accordingly, ARIMA model applied to historical hemorrhagic fever 

with renal syndrome (HFRS) data is accurately forecasting the HRFS incidence in China (Liu 

et al., 2011). Thus, accurate forecasting of the hospital or clinic admission is possible using 

ARIMA model. 

 

3. METHODS 

 

3.1 Data 

Data from the Paediatric clinic of the hospital were used as the basis for this study.  The 

monthly data from January of 2012 to December of 2017 were used as training data on which 

the forecasting models were trained (estimating model parameters) base on the count of 

patients receiving treatments at the paediatric clinics. The monthly data from January to June 

of the year 2017 were kept as hold out sample to verify the accuracy of the forecasting 

models. The data were related to patients treated by the consultant doctors at the clinics only.  

The data for this study were obtained from the admission record books of the clinic. The data 

include the date of the patients received treatment from the clinic.  
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3.2 Method of analysis 

The data from the clinics can be considered as a collection of observations made in sequence 

of time, therefore modelling with the time series technique is possible. Particularly, the Box-

Jenkins approach to autoregressive integrated moving average or ARIMA (p, d, q) models 

that become popularly applied in empirical studies among researchers in health care industry 

(e.g., Channouf et al., 2006; Reis and Mandl, 2003).  

The Box-Jenkins approach to time series model building is a method of finding a 

suitable ARIMA model that adequately represents the given set of data. The method is an 

iterative, which may go through the process many times before arriving at suitable model. 

That is, the methodology is designed to arrive at ARIMA models through a three interactive 

stages procedure based on models identifications, models estimation, and diagnostic checking 

or model validation, and then utilize the models for forecasting (Bowerman et al., 2005; 

Wang, 2008; Wilson and Keating, 2009).  

Figure 1: The Box-Jenkins Methodology flowchart  
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Box-Jenkins methodology 

Figure 1 shows Box-Jenkins process flowchart. The raw data is examined to determine either 

the time series stationary or non-stationary. In Box-Jenkins methodology, the non-stationary 

series must be transformed to stationary series to model. The first step is model identification. 

In identification process, it is very important to exam the behaviour of the autocorrelation 

function (ACF) and the partial autocorrelation function (PACF) from the given data of time 

series.  ACF plainly mean as measure of significance of correlations between the current 

observation and the past observations, and to ascertain how far back in time are they 

correlated, i.e., how many time lags they correlated. And PACF values are the coefficients of 

a linear regression of the time series using its lagged values as independent variables. The 

values of ACF and PACF both will fall between – 1 and + 1 if the time series is stationary 

(Wang, 2008). The ACF and PACF provide a useful measure of the degree of dependence 

among the values of a time series at different times. As such, they play an important role in 

forecasting future values of the series in terms of past and present values. A pair of 

correlograms (ACF and PACF) is used to indentify an appropriate ARIMA model for the 

given set of data. The correlogram is a graph showing the time series ACF or PACF values 

against the lag k. Several important information of the given time series can be acquired by 

examining a correlogram.  For example, the times series observed could be considered 

stationary if the ACF of the time series “cut of fairly quickly” or “dies down fairly quickly”, 

and then the order of ARIMA model can be indentified i.e., the values of p and q can be 

identified by observing the pair of correlograms.  The general rule in this identification 

process as follows:  

(i) If ACF abruptly stop after q spikes, then the appropriate model is MA(q) type. 

(ii) If PACF abruptly stop after p spikes, then the appropriate model is an AR(p) type. 

(iii) If neither function falls off abruptly, but both die down extremely slow, the 

appropriate model is an ARMA (p,q) type (Bowerman et al., 2005; Wilson and 

Keating, 2009). 

The second step is model estimation. Specifically, parameters of the model are tentatively 

identified. Box-Jenkins methodology required that ARIMA model must satisfy the condition 

of stationary and invertible. An AR model of order p, with parameters pφφ .......1  is stationary 

if and only if the combination value of parameters less than 1. The MA model of order q, 

with parameters qθθ .........1 is invertible if and only if the value of parameters is less than 1. 

For ARIMA(p,d,q) model, the AR(p) must be stationary and MA(q) must be invertible 

(Bowerman et al., 2005; Wang, 2008). In this study SPSS 12.0 package is used in estimation 

process. 

The third step is diagnostic checking process or model validation. That is to identify 

the correct parameters of the model has been chosen. If the model is “good”, then the 

residuals are expected to be random and close to zero.  There are several ways of checking if 

a model is good. The common approach is to examine the residues. In this step, ACF 
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behaviour of the residuals produced by estimation process is examined. For a good model, the 

residual time series should be close to an independent and identically distributed (iid) zero-

mean white noise (random series with normally and independently distributed). As such, 

about 95% of the sample autocorrelations should fall between the bound
n

2±  (further 

explain in data analysis and modelling section). Instead of checking to see whether each 

sample autocorrelation coefficient falls within the bounds, it is also possible to carry out what 

is called Ljung–Box Q statistic test. If correct model is obtained, the residual should be 

normally distributed and uncorrelated. Therefore, the autocorrelation of the residuals should 

be small. Thus Ljung-Box Q statistic should be small. The model also would have a smaller 

standard error and larger p-value corresponding to Ljung-Box Q statistic. Repeating the 

process of estimation is necessary if the diagnostic checking is unsuccessful in obtaining 

appropriate model.  Therefore, the process is loop through many times until the correct 

parameters of the model identified. The model then can be used in forecasting process. 

 

 

3.3 The ARIMA Model 

The primary objective of time series analysis is to study the dynamic or the mechanism that 

generates the data. Then, forecast future values of the series base on the analysis (Chin and 

Fan, 2005; Billings and Yang, 2006). The most common technique of forecasting for time 

series data is by using autoregressive integrated moving-average (ARIMA) modelling (Jones 

et al., 2002). ARIMA models were developed by Box and Jenkins (Wilson and Keating, 

2009). There are three basic components to an ARIMA model: auto-regression (AR), 

differencing or integration (I), and moving-average (MA). All three are based on the simple 

concept of random disturbances or shocks. Between two observations in a series, a 

disturbance occurs that somehow affects the level of the series. These disturbances can be 

mathematically described by ARIMA models. Each of the three types of processes has its 

own characteristic way of responding to a random disturbance. In general form, an ARIMA 

model is typically expressed as:  

ARIMA (p,d,q), where p is the order of auto-regression, d is the order of differencing 

(or integration), and q is the order of moving-average involved (SPSS Trends 13.0 manual).  

The non-seasonal mixed ARIMA (p,q) model can be expressed in equation form of 

qtqtttptttt aaaaZZZZ −−−−−− −−−−+++++∂= θθθφφφ ........ 22112211  

or   ∑∑
=

−
=

− ++=
q

i

itit

p

i

itit aaZZ
11

θφ  

Where tZ is a realization of the time-series, φ  and θ  are parameters of the model and a  is an 

Independent and Identically Distributed (IID) error term with mean of zero and constant 

variance. ARIMA models are usually formulated with the premise of constant variance in 

error term (Jones et al., 2002). 
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Differencing (ARIMA) 

First, let discuss the differencing or integration process of ARIMA. The differencing or 

integration is denoted by “I”, the second component of ARIMA. In practice, most of the time 

series are non-stationary. The characteristics of the observed values of the time series change 

over time (Pindyck and Rubinfeld, 1991), i.e., the time series experience periods of high 

volatility followed by periods of relative serenity. Box-Jenkins methodology required time 

series use in forecasting to be stationary, i.e., stationarity implying that the time series is 

invariant with respect to time and the mean is constant through time. As such, non-stationary 

time series must be transformed into stationary time series values. The transformation process 

can be done through differencing or integration. The symbol “I” denote that the time series 

has been transformed into a stationary time series.  

Therefore, an integrated series can be considered by looking at the changes, or 

differences, from one observation to the next. Let consider n values nyyy ,....., 21 of a time 

series, if the n values fluctuate with constant variation, e.g., the difference from one 

observation to the next is often small. Thus, the time series can be considered stationary. This 

stationarity, of the differences is highly desirable from a statistical point of view. 

For example, the standard form for integrated models (of first differences), or models that 

need to be differenced, is I(1) or ARIMA(0,1,0), i.e., first difference of the time series values 

nyyy ,....., 21  are 1−−= ttt yyz , where nt ,......,2= . Sometime second differences are required 

in order to produce stationary time series values; such models are termed I(2) or 

ARIMA(0,2,0). The second differences of the time series values are 

)()( 211 −−− −−−= ttttt yyyyz  or 212 −− +−= tttt yyyz  for nt ,......,4,3= . 

Differencing beyond the second or third order is rare. Usually, when a series exhibits 

such extreme trends, it is not stationary due to a non-constant variance. Applying a log or 

square root transformation to the series before estimating the model will generally removes 

the trend from the data, i.e., stabilize the variance (SPSS Trends 13.0 manual; Bowerman et 

al., 2005). 

 

Auto-regression (ARIMA) 

The model tptttt aZZZZ +++++∂= −−− φφφ ....2211 is non-seasonal autoregressive model of 

order p. In an autoregressive (AR) process, each value in a series at time t depends only on its 

previous values and on a random noise. It is a linear function of the previous value or values. 

That is, in order to make a forecast one needs to know the p previous values. AR assumes that 

the future values of an examined variable may be approximated and forecasted by its own 

previous values. That is, its past behaviours may suggest important information regarding its 

near future dynamics (Chin and Fan, 2005). In a first-order autoregressive process, only the 

single preceding value is used; in a second-order process, the two preceding values are used, 

and so on. These processes are commonly indicated by the notation AR (n) or ARIMA        
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(n, 0, 0), where the number in parentheses indicates the order. For example, non-seasonal 

autoregressive model of order 1 is denoted by notation AR (1) or ARIMA (1, 0, 0) and the 

process has the functional form of ttt aZZ += −11φ  or Value tZ  = Coefficient φ * Value 1−tZ  

plus disturbance ta . Where: Value tZ  is the value of the series at time t. The Coefficientφ  is a 

value that indicates how strongly each value depends on the preceding value. The sign and 

magnitude of the coefficient are directly related to the sign and magnitude of the partial 

autocorrelation at lag 1. When the coefficient is greater than –1 and less than +1, the 

influence of earlier observations dies out exponentially. The coefficient φ  is an unknown 

parameter that must be estimated from sample data. The Disturbance or random shock ta is 

the value that assumed to have been randomly selected from a normal distribution that has 

mean zero and a variance that is the same for each and every time period t. The random 

shocks .....,, 321 aaa  in different time periods are assumed to be statistically independent of 

each other. 

Conceptually, an autoregressive process is one with a “recall capacity,” in that each 

value is correlated with all preceding values. In an AR (1) process, the current value is a 

function of the preceding value, which is a function of the one preceding it, and so on. Thus, 

effect of shock or disturbance in an autoregressive process is diminishing as time passes. In 

practical term, AR processes are more useful for modelling longer-term effects (SPSS Trends 

13.0 manual; Bowerman et al., 2005).  

 

Moving-average (ARIMA) 

The model qtqtttt aaaaZ −−− −−−−+∂= θθθ ....2211 is non-seasonal moving average model of 

order q. The moving-average (MA) component of an ARIMA model tries to predict future 

values of the series based on deviations from the series mean observed for previous values. In 

a moving-average process, each value is determined by the weighted average of the current 

disturbance and one or more previous disturbances. The order of the moving-average process 

specifies how many previous disturbances are averaged into the new value. In the standard 

notation, an MA (n) or ARIMA (0,0,n) process uses n previous disturbances along with the 

current one. For example, non-seasonal moving average model of order 1, denoted by MA (1) 

or ARIMA (0, 0, 1) has the functional form: 11 −−= ttt aaZ θ  or Value Zt = disturbancet - 

Coefficient * disturbancet–1. Where: Value Zt is the value of the series at time t. Coefficient 

θ is a term that indicates how strongly each value depends on the preceding disturbance 

terms. The sign and magnitude of the coefficient are directly related to the sign and 

magnitude of the autocorrelation at lag 1 and disturbance is the chance error associated with 

the series value at time t. Each value in a moving-average series is a weighted average of the 

most recent random disturbances. Thus, in a moving-average process, a disturbance affects 

the system for a finite number of periods (the order of the moving-average) and then abruptly 
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ceases to affect it. In practical terms, MA processes are more useful for modelling short-term 

fluctuations (SPSS Trends 13.0 manual; Bowerman et al., 2005).  

 

4. DATA ANALYSIS AND MODELING 

 

To fit a time series data into ARIMA models, the data are required to be stationary. Thus, the 

raw data need to be transformed to stationary first (if required) before next steps of modelling 

process are performed. In other words, the transformed data or original data have statistical 

properties that are constant through time, for example the time series has constant mean and 

variance, has no trend overtime. In order to determine whether the data are stationary or non-

stationary, the time series data must first plotted to examine their pattern, i.e., a graph 

showing the observations against time. To further confirm the stationarity of the time series 

we can observe the ACF behaviour of the series. If the ACF behaviour shows the series cuts 

off fairly quickly or dies down fairly quickly then we can consider the time series is 

stationary. If non-stationary, then the series is further processed to make it stationary. 

Differencing is an effective way to remove trend and seasonal components in a time series. 

As the time series is stationary, it could be used for ARIMA modelling purpose. In ARIMA 

modelling process, inspecting correlogram of ACF and the correlogram of PACF of the time 

series is very essential. Notice that in these pair of ACF and PACF correlograms the lines that 

parallel to the x-axis are representing the error bounds for the data. The lines are determined 

based on
n

2± , where n represents the number of data. If the value of the ACF and PACF 

lie within these lines, then the values are considered not significantly different from zero. In 

other words, the plot shows approximate 95% confidence limits at this value, and the 

observed values of ACF and PACF which fall outside these limits are considered different 

from zero at the 5% level. Thus, the nonzero lags (spikes) could be identified as tentative 

order of ARIMA models (Bowerman et al., 2005; Wilson and Keating, 2009). Parameters for 

these ARIMA models were estimated by the SPSS 12.0 package. Melard’s algorithm was 

used for estimating ARIMA models parameters. Ten iterations were specified with default 

tolerance of 0.001.  

Figure 2: Plot of monthly patient demand at paediatric clinic  
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Figure 3: ACF of monthly patient demand at paediatric clinic 
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Figure 4: PACF of monthly patient demand at paediatric clinic 
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Figure 2 shows the time plot of the time series. Numbers of patients received treatment were 

relatively stable between 2012 and 2016, but decrease toward the end of 2016 was evident. 

Average number of patients visiting the paediatric clinic is 362.7667 or approximately 363 

patients per month. The time series shows that there is no seasonality and trend in the data as 

evident from plot in figure 2. Accordingly, from the graphs, the time series can be considered 

stationary. Furthermore, the ACF behaviour (figure 3) of the series shows that the series dies 

down fairly quickly. As such, the series was considered stationary. Since the time series was 

stationary without being difference or integration, the optimal degree of integration was 

determined to be zero (d = 0).  By means of observing the pair of ACF and PACF 

correlograms (Figure 3 and 4), tentative ARIMA models were determined. Both the 

correlogram of ACF and PACF for monthly paediatric demand show the characteristic of dies 

down. Therefore, the mixed autoregressive moving average of order (p,q) was possible 

ARIMA model. Accordingly, the order of autoregressive (spikes of PACF) would be AR of 9 

or 12 and similarly the order of moving average (spikes of ACF) would be MA of 9, 12, 21, 

or 27. Consequently, various combination of AR and MA orders were then tested to 

determine adequate ARIMA (p,d,q) model from the available training data. 

Finally, ARIMA (2, 0, 2) model (second order Autoregressive combined with second 

order Moving Average) was found to generate appropriate results to represent monthly 
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paediatric demand. The following Table 1 shows the estimated parameters for ARIMA (2, 0, 

2) model of monthly paediatric demand. 

Table 1: Estimated parameters of ARIMA (2, 0, 2) model 

 

Parameter CONSTANT 
1φ  2φ  1θ  2θ  

Estimate 366.71822    .98949     -.99852     .95987     -.96816     

Std. Error 6.4846995     .0190798     .0101789    .0916222     .1326717     

T-RATIO    56.551305        51.860708         -98.097093         10.476362         -7.297387         

APPROX. PR. .0000000 .0000000 .0000000 .0000000 .0000000 

 

Stationary and Invariability condition of ARIMA (2, 0, 2) model 

 

From Table 1, the model shows that the sum of coefficients of AR (2) (i.e., 21 φφ + ) 

component was less than 1 and also the sum of coefficients of MA (2) (i.e., 21 θθ + ) 

component was less than 1. As such, the model was fulfilled the requirement of stationary 

and invertible condition.   

Diagnostic checking of ARIMA (2, 0, 2) model 

 

Figure 5: ACF of residuals of ARIMA (2,0,2) model 
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Figure 6: PACF of residuals of ARIMA(2,0,2) model 
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Figure 7: Autocorrelation plot of residuals of ARIMA (2, 0, 2) model  

 Auto- Stand. 

Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1   Box-Ljung  Prob. 

                   �������������������������������������������������������������������������������������������������������������������������������������������������������������������� 

  1   .068   .126                 .    *   .                       .296   .587 

  2   .037   .125                 .    *   .                       .384   .825 

  3   .142   .124                 .    *** .                      1.698   .637 

  4   .123   .123                 .    **  .                      2.698   .610 

  5   .079   .122                 .    **  .                      3.122   .681 

  6  -.039   .120                 .   *    .                      3.224   .780 

  7  -.193   .119                 .****    .                      5.848   .558 

  8   .159   .118                 .    *** .                      7.667   .467 

  9  -.060   .117                 .   *    .                      7.931   .541 

 10  -.079   .116                 .  **    .                      8.393   .590 

 11   .025   .115                 .    *    .                       8.439   .673 

 12   .271   .114                 .    *****                     14.115   .293 

 13  -.008   .112                  .   *   .                       14.119   .365 

 14   .078   .111                  .   ** .                      14.610   .405 

 15   .151   .110                  .   ***.                      16.490   .350 

 16   .173   .109                  .   ***.                      19.013   .268 

 17   .001   .108                  .   *   .                       19.013   .328 

 18  -.026   .106                  .  *   .                      19.075   .387 

 19  -.005   .105                  .   *   .                       19.077   .452 

 20   .239   .104                  .   ***.*                     24.376   .226 

 21  -.085   .102                  . **   .                      25.062   .244 

 22  -.209   .101                  ****   .                      29.328   .136 

 23   .014   .100                  .   *   .                       29.348   .169 

 24  -.012   .098                  .   *   .                       29.362   .207 

 

Residual analysis of the ARIMA (2,0,2) model was carried out to verify the model.  Figure 5 

and 6 shows the ACF and PACF correlogram of the residuals respectively and Figure 7 show 

autocorrelation plots of residuals.  By observing Figure 5 and 6, we could see that ACF and 

PACF of the residuals roughly lie within the boundary lines except for a few lags (spikes), 

indicating that overall the residual time series approximates to a zero mean white noise 

behaviour. From Figure 7, we could observe that the autocorrelation of the residuals were 
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small. Thus Ljung-Box Q statistic values were small. The model also had a smaller standard 

error and larger p-value (i.e., 05.> ) corresponding to Ljung-Box Q statistic. As such, we 

could conclude that the model was adequate. 

 

4.1 Forecasting 

The main objective in this study is forecasting. Forecasting is to predict future values of a 

time series. Time series models developed are used to forecast future demand on each clinic. 

However, we need to evaluate the accuracy of the forecasting models over certain periods of 

time in order to identify the best model, i.e., the model that has little error as possible. The 

common method that usually employ is the mean absolute percentage error (MAPE). MAPE 

is used to measure of quality of fit that measure the percentage of the deviation between 

forecasted and observed values of a given time series. A MAPE of 0% indicated a perfect fit 

of the model to the training data (Reis and Mandl, 2003; Wilson and Keating, 2009). The 

mean absolute percentage error is calculated as: 
n

AFA
MAPE

ttt∑ −
=

/)(
.  

Where, At = Actual value in period t, Ft = Forecast value in period t, and n = Number of 

periods used in the calculation.  The accuracy of forecasts of patients demand at the clinics 

was described and presenting in Tables 2. Table 2 shows the actual and forecasted patients 

demand and MAPE.  

 

Table 2: Forecast monthly patients demand at paediatric clinic from ARIMA (2,0,2) model 

Period 

(month) 

Actual 

(patients) 

Forecast Error Error% Absolute 

Error% 

Jan 2017 337 372.035 -35.035 -10.396 10.396 

Feb 2017 417 400.142 16.858 4.042 4.042 

Mar 2017 278 390.293 -112.293 -40.393 40.393 

Apr 2017 388 352.583 35.417 9.128 9.128 

May 2017 343 325.323 17.677 5.154 5.154 

Jun 2017 327 336.119 -9.119 -2.813 2.813 

July 2017  373.916 MAPE 11.988 

Aug 2017 400.316 

Sept 2017 388.589 

Oct 2017 350.733 

Nov 2017 325.204 

Dec 2017 337.846 

Jan 2018 375.733 

Feb 2018 400.381 

Mar 2018 386.841 

Apr 2018 348.950 

May 2018 325.193 

Jun 2018 339.614 

July 2018 377.482 

Aug 2018 400.339 
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Sept 2018 385.055 

Oct 2018 347.236 

Nov 2018 325.288 

Dec 2018 341.417 

  

Table 2 shows actual patients demand from January 2017 to June 2017, forecasted patients 

demand from July 2017 to December 2018, and corresponding errors of forecasting for the 

period from January 2017 to June 2017. From Table 2 it was observed that the absolute 

percentage errors high in March 2017. The forecast indicate a fluctuation of monthly patients 

demand at paediatric clinic, being the lowest was 325 and the highest was 400 patients 

receive treatment per month. The Table 2 also present that the ARIMA (2, 0, 2) model 

yielded a MAPE of 11.988 percent. 

 

5. CONCLUSION AND RECOMMENDATIONS 

 

This study has considered number of ARIMA models during estimating and forecasting of 

patients demand at paediatric clinic. The models were developed base on monthly time series 

data. Finally the best model was selected. Still, it is very essential that forecast need to be 

updated as and when more data becomes available. Obviously, the forecasting models act as 

useful components to the healthcare system particularly to the Paediatric Clinic. However, the 

model should not be judged totally base on technical criteria such as MAPE, but the 

application of the model in real situation such as able to predict patients presentation in the 

clinic practically accurate should be given due consideration.  

 

5.1 Model selection 

Model was selected base on MAPE value. The smallest the MAPE is the better. Evaluating 

the Table 1 and 2 we could determine the best model to represent Paediatric clinic meant for 

forecasting patients demand. MAPE for ARIMA (2,0,2) was 11.988 percent. As such, 

monthly paediatric patients demand is better modelled as an ARIMA (2,0,2) model because 

of smaller MAPE value. This means that paediatric patient demand may be characterized as 

the combination of autoregressive and moving average.  

 

5.2 Scope and limitation of study 

There are some limitations of time series analysis models and ARIMA model in particular. 

ARIMA model very much depend on stationary of time series, which some time difficult to 

ascertain.  ARIMA model only capture short-range dependency and the model reflect the 

behaviour of the particular clinics or hospitals. However, such model could be applied to 

other clinics or hospitals with little adjustment.  

The data were recorded by the hospital staff, as such the data may contain bias that 

very difficult to identify. The lack of control over the data recorded may increase the risk of 

misinterpreting of finding and therefore drawing invalid conclusions. Furthermore, the time 
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series analysis does not consider any intervention influence (e.g., diseases pandemic) during 

data recording process.  

 

5.3 Discussion and conclusion 

The ARIMA models are a useful tool for analysing time series data and then make use of the 

model in forecasting. Forecasting offers the potential for improve planning in healthcare 

service provider. The ARIMA (2,0,2) model could be very useful for the paediatrician. These 

models are also useful for the hospital’s managers and staff that engaged in resource 

planning. Nurse Manager could reliably anticipate the number of beds required in near future 

and prepare in advance for patients admission and staff as required. Thus, provide effective 

and efficient nursing care. And elective operation can be performed as schedule and hospital 

beds are fully utilized most the time. Therefore, modelling and forecasting the patient volume 

provides useful information for hospital and health care authorities. The information is useful 

in allocating resources, scheduling staff, and planning future expansion.   
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